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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.
TECHNICAL NOTE NO. 207.

THE SIMPLIFYING ASSUMPTIONS, REDUCING THE STRICT
APPLICATION OF CLASSICAL HYDRODYNAMICS TO
PRACTICAL AERONAUTICAL COMPUTATIONS.*

By Max M. Munk,

The application of claseical hydrodynamics to the solution
of aeronautical problems is based on slmplifying assumptione of
a fundamental nature, as the process involves setting aside the
viscosity and compressioility of the ailr in the first place.
These two properties greatly coaplizate any analytic treatment of
aerodynawlcal guestions, and oy neglecting thew 1t vecomes possi-
ble to obtain valuable, though approximate results, which are of
great practical use.

The errorse introduced by negleoting viscosity and compressi-
bility, and the corrections therefore necessary, as well as the
criteria for model teste free from such errors, have often been
discussed and are not the subject of this paper. But the simpli-
fyving assumptions which simply allow the application of hydrody-
namics are got enough. The mathewatical treatment required is
86till too involved ani difficult for use in practice. This paper
deals then with the simplifying assumptlions necessary to make

classical hydrodynamics adapted for practical usse.

* Paper read at International Congress for Applied Mechanlics,
Delft, Holland, April 232-38, 1934.



EvA.C+A- Technical Hote Ho. 207 3

& similar development took place in the theory of elasticity.
The assumptions expressed by Hooke's Law and by others removed to
a great extent the diffioultiesloausei by the physical aspect of
the problem. But even then, the mathematical treatment had to be
gimplified too, and it was not until the theory of infinitely
elongated beame and columns had been worked out, that the theory
of elasticity became a valuvable tool in the hands of piaotical
englineers.
The general method followed t0 simplify the numerical
work in hydrodynamics conslsts merely in neglecting quantities of
a low order of magnitude. I proceed at once to discuss how this
is done in the different problems of aeronautical hydrodynamics.
The solutions heving found & practical application up to now are:
1. Theory of the lateral air forces on airship hulls
2. Theory;of wing sections in a two-dimensional flow
3« Theory of wings with a finlite span

4. Propeller theory

1. The Theory of the Lateral Alr Forces on Airship fdulls.

There are earlier attempts to investigate the flow around
airship hulls with circular cross-section moving parallel to
thelr axis, the method consisting of first chocsing a oertaiﬁ dis—
tribution of fictitious sinks and sources and then determining
the shape of the hull and of the streamlines corresponding 0 that

distribution. By substituting cdoublets for the simple sources oT
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sinks, the lateral motion of airsaip hulis with cylindrical cross
sections c¢an oz investizated in quite an analogous way. It is
difficult, however, to find such =z pair of distributions of
gources and sinks, and of dcublete which give rise to the same
shape of the hull. The method is rather laborious; furthermore,
it is not adapted for practical uss.

Airship hulle have an elongation ratio of the length to the
maxirum diameter up to 10, and more, and it suggests 1tself to
introduce the gimplifying assumption of an infinite elongation
ratio. This is not of so great use for the problem of loﬁgitud~
inal motion ‘paraliel %o the axis), since, with diminishing diam-
eters, logarithmic terms becoms domirant. The bydrodynamlc flow
set up by the longitudinal motion is not of so great practical
importance; however. It is known that the ailaitional apparent
wass of the hull in this case is swill when cowpared with 1ts ac-
tuzl mass. In many oasés it can ve neglectsd. The velocity of
flow 2t all points is small when compared with tns veloclty of
motion, and hence the pressure differences are small too. A
blunt nose is an exception to this rule, but then, 2 blunt nose
is in contradiction to the assumed infinite elongation, which
should reduce all zones of the hull to an approximately cylin-
drical shape. Near the plunt nose, therefore, large air veloocli-
ties and pressure differences do occur in a straight flight.
Along the larger portion of the hull,' however, the veloclity of
the air relative to the hull can oe assumed to be equal to the

velocity of flight.
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The mogt important practical problem next to the drag exper-
ienced by the hull in straight flight is the computation of the
lateral forces acting on the hull when flying with an inclination
of the axis with resgpect to the direction of motion, or when fly-
ing along a curved path. The computation of these forces and of
the pressure distribution giving rise to them becomes greatly
simplified by the assumption that the elongatioﬁ be infinite.

Each zone of fthe hull can then be conslidered asg cylindrical, and
the component of the velocity distribution set up by the lateral
component of motion can be supposed to ve the two-dlmensional flow
around this cylinder, corresponding to tﬁe lateral velocity compo-
nent. This two-dimensional flow is generally known in practical
cases, the cross—section is often circular or at least approaching
a circle or ellipse and the flow produced by its motion can then
easily be computed. The potential of this two-dimensional flow
may be denoted by &, and some provisgion may be made s0 as 1O
make the potential of all crogs—-sections equal over all pointe of
one surface at right anglesgs to all streamlines. For circular
cross—sections thie could be the plane through the axis at‘right
angles to the lateral component of motion. Then

Vzég
&%

gives the longitudinal velocity near the surface set up by the

lateral motion. 1In practice it is swall when compared with the

()

longitudinal velocity component of motion. This suggeste the ad-

ditional simplifying assumption that the angle o between thé axis
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and the direction of motion be always small. Then the pressure
variation, which according to Bernouilli's law contains the square
of the velocity to the hull (V + v)z, becomes approximately linear
in v and proportional to 2 Vv, <the term with v giving rise
only to a counstant pressure and the term with v° being small of
the second order of magnitude. It follows, for the main case of
circular sections, where, as 1s known, the potential of the two-
dimensional flow in question at the points of the circle is pro-
portional to their distance from a diameter, that the pressure
gradient parallel to the plane of symmetry of the flow at the
points of the boundary of such a croess-section is constant.

If all cross-sections are geometrically similar, thelr appar-
ent additional masses in the two-dimensional problem are propor-
tional to their areas; with circular cylinders in particular,
the apparent additional mass is equal to the mass of the displaced
fluid. Hence the apparent additional mass of a very elongated
hull with circular sections for lateral motion is equal to the
mass of the displaced air; 1f the section is not circular, the
apparent additionzl mass is k ‘times as large, where Xk denotes
the corresponding ratio for the section in a two-dimensional flow.
It follows that the entire couple of the lateral ailr forces 1s
equal to |

e % gin 2 a4 ¥ Volume

(where P denotes the density of the air). (Ref. 1.)



N.A.C.A. Technical YNote No. 207 : g

A formula equally as simple can be found for the distribution
of the lateral forces along the axis. Suppose the ship to fly
gstraight and horizontally with the axis pitched up under an angle
a with <the horizontal. Consider a vertical layer of air at right
angles to the plane of symmetry of the sghip. When the hull passes
through it, a two-dimensionalflow ig set up in that layer, corre-
sponding to the lateral veloclty component V cos & and to the
crogs—sectiion of the hull wahere the layer of air intersects it.
The ares of the cross-section, and hence the apparent additional
mass of the two-dimensional flow in the layer is varying as the
hull passes along with the velocity V. Hence a change of the
momentum of the two-dimensional flow in the layer takes place con-
tinuously, giving rise to the reaction

as

2P
v ] sin (2a) Xk ax

where
V denotes the velocity of flight

a the angle of pitch
8 the area of crosgs-section

k the coefficient of avparent additional mass of
cross—section

o the density of air
¥ +the coordinate along the axis of the hull.
For circular crosgs—seciions, k = 1.
The same assumptions and arguments lead %o useful formulas

for the lateral forces on airship hulls flying in a curve. The
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details can be found in Ref. 2.

2. The Theory of Wing Sections in s Two-Dimensional Flow.

The theory of the wing section is in a way the two-dimensional
analogy to the theory of airship hulls with circular cross-section.
A large amount of literature exists about the former problem, I
mention only Kutta, who originated thls branch of aerodynamics, and
Joukowsky, who obtained most publicity in conneotion with it.

The method followed by Kutta and his successors is based on
the conformal transformstion of the wing section boundary into a
circle, a process requiring very laborioué mathematical work, and
which cannot be applied to most actual wing sections but must be
restricted to certain simple sections distinguished by no other:
advantages.

In order to reduce the solution of this problem to computa—
tions to be made in the office of an alrplane factory, 1t suggests
itself ﬁo congider the wing section as infinitely elongated in
analogy to the alrship hull just treated. The assumptions are
then that (a) the maximum thickness, and (b) the maximum camber,
is small when compared with the length of the chord. These two
assumptions are fairly well complied with by nearly all wing sec-
tions used in practice. In addition, %t is convenient, though not
absolutely necessary, to assume the angle of attack between the
chord and the direction of motion to be small too. Then the veloc-

ity of the flow created by the motion of the wing is smwall when
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compared with the velocity of motion, and can be neglected when
added to it. The simplificationileading to a convenient develop-
ment of the main formula consists now in substituting a new bound-
ary in the problem. Instead of the boundary of the section, the
chord, tﬁat ig a straight line in the lmmediate neighborhood of
all points of the gsection, i1s taken as the reference line for the
conditions of flow. For the computation of the 1ift, for instance,
the wing section can first e replaced by itg middle line, having
as ordinates the arithmetical mean &, of the upper and lower or-
dinates of the wing section, the chord being the axis of absclssae
X. Then the velocity component of the flow at any point of the
chord and normal to it is approximately V & £&/dx and this re-
duces the original problem to one the solution of which is well
known. Any desired quantity referring to the flow can be ex-
pressed as a linear function of all mean ordinates of the sectlon,
either as an infinite series or as a definite integral. The lat-
ter is more convenlent for practice, particularly if the chord
passes through the rear edge of the section. The 1ift is given
by the condition that the air does not flow around thé rear edge;

this leads %0 the formila

+1 o £ ax
-

L =V%p (length of chord = 3)

(1L - %) /1-%°

The pitching moment with respect to the middle of the chord re-

sults

+1 x £dx

M= (Reference #3.)

-3 1 -



N.A.CvA. Technical H{ote Wo. 207 3

When computing the pressure distribution around the wing sec-
tion, the thickness of the section cen no longer be disregarded
‘but gives rise %o gimilar definitelintegrals giving terms of the
same order of msgnitude as do the mean ovdinates. The preesure
on both sides is diminished owing 10 the thickness and hence a
section of finite thickness is supported more by suction on its

upper side than by pressure on the lower.

2. Theory of Wings with Finite Span.

The practical difficulties of this problem lie in its being
a three-dimensional one. As is well kmown, Dr. L. Prandtl at-
tacked 1t with the methéds exlsting for the investigation of three-
dimensional flows, using Eelmholiz vortex lines, a method which
was also tried by Lanchester. ' In this way, Dr. Prandtl obtained
valuable results, though chiefly qualitative ones. Practical
computations can only be made by reducing the problém to & two-
dimensional one by means of sultable assumptions. It ié signif-
icant in this connection that Dr. Prandtl from the very first vir-
tually abandoned the three-dimensional treatment by assuming the
vortex lines 1o be parallel to the direction of flight rather
than to coincide with the streamlines. The strict two-dimensional
treatment of the problem requires in addition that the components
of the flow set up by the wing parallel and lateral to its motion
e neglected when added to the velocity of flight. Then, the use

of the Helmholtz vortex lines can be avoided altogether and the
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usual methods for investigating two-dimensional flows can be uéed
instead. This is a proceeding wuch wmore desirable, for the method
of vortices and vortex lines seems not to eppeal readily to minds
not thoroughly trained mathematically, and gives rise to confusion
among practical men rather than serving to enlighten them.

It should be mentioned in this connection that Dr. A. Betz
investigated the air forces of a biplane cellule by combining in
a particular way the wing theory and the wing section theory.
Following Dr. Prandil he assumed the actual vortex lines to be
parallel; and furthermore, he replaced the winge by fictitious
concentrated vortex lines, obtaining thus a continuous system of
vortices. He obtained valuable qualitative resgults, but his method
is too laborious for practice and no exact. quantitative results
can be expected from it. His assumptions amount to replacing the
wings by cylinders of infinitely small diameter, which does nosw
seem justified to me as the distance between the upper and lower
wing of a biplane cellule is not large when compared with the’
wing chord. And even if it were much larger than it 1s, so that
neglecting the chord would be permissible, it would not yet be
evident that the first term, that is, the circulation term char-
acteristic for the 1ift and vanishing inversely as the dlstance,
is dominant? It seems 10 me that at least the second term, char-
acteristic for the moment of the air force and vanishing inversely
as the square of the distance, should be taken into account too,

as it is of the same order of magnitude as the first one (Refer-
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ences 4 and 5).

The fundamental assumpiion of tne simplified wing theory is,
accordingly, that the alr contained in a plane layer at right
angles to the direction of flight remains inside the‘same layer
and moves asg a two-dimensional flow. Far in front of the air-
plane, the layer is supposed to be at rest. While passing through
it, the wings gradually built up a two-dimensional flow in it.
After the wings have passed, the momentum of this flow is equal
and opposite to the 1ift transferred from the layer to the wings.
The two-dimensional flow is further determined by the condition
that the impulsive pressure, necessary to create it and acting
along the boundariesg of the front view of the wings, 1s equal and
opposite in directlion to the distribution of the 1ift transferred
to the wings. It can be demonstrated in particular that the twe—
dimensional flow has only obtained half its strength when the
wings are passeing the layer. This factor 1/3 finds its analogy
in many other branches of theoretical mechanics.

The kinetio.energy of the potential flow can be computed.
The work consumed in overcoming the drag of the wings (called the
induced drag) is equal to the kinetlic energy transferred to the
layers after the wings have passed them. The two-dimensional
flow, already half created in the nelghborhood of the wings gives
rige also to a difference vetween the "effective" angle of attack
(between chord and relative ailr flow) and the "geometric" angle
of attack (between chord and direction of motion), called the

"induced angle of attack.”
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As an additional assumption, the induced drag and induced
angle of attack are generally replaced by the minimum value of
these two quantities compatible with the area of the surface, the
span of one wing or plan view of several wings, the magnitude of
the 1ift, the density of the air and the velocity of flight. A
further additional assumption which is often used is that the as-
pect ratio bB/% , is large. There are, further, very simple
rules referring to the diminution of the 1ift or the rolling mo-
ment caused by the induction, which primarily apply to elliptic
wings only. Thege are wings, the chord of which plotted agains?
the span, gives a half ellipse. With then, aﬁdessuming the 1lif%
to be proportional to the effective angle of attack, this factor
of dimimution depends on the aspect ratic only. The same factor
can be used approximately for any wings having the same aspect
ratio.

The main formilas of the wing theory are:

Induced drag of a wing
L2
B R VL

Dy =

Mean induced angle of attack

Cliz L
¥y v‘%
Factor of 1ift reduction
1
2
R i~
o}

1

Factor of reductlon of the rolling moment
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Induced yawing moment My due to the rolling moment Mg

where
D; = the induced drag

a3 = the induced angle of attack

L = +the 1lifst
Op, = the 1ift coefficient —E—
sV
2
S = the entire wing area
T = +the moment of inertia of the wing area with
respect to the axis
b = span
V = velocity of flight
p = density of air
k = a factor dependent on fhe shape of the front
view of the wings (X¥° ¥ I is the area of
apparent mass of the frOn% view of the wings).
k = 1 for monoplanes.

{(Reference 3.)

4. Propeller Theo;v.

The assumptions which lead to a practical formila for the
efficiency of a propeller, or rather to the upper limit of the
efficiency, were first made by Froude. The density of thrust per
unit area of the propeller disk ig assumed to be constant and the

rotation of the slipstream is neglected. The efficiency then has
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the maximum value compatible with the thrust, the velpcity of mo-

tion, the diameter of the propeller, and the density of air, and

becomes
BXA/:L'-!—ETTT 5
Doz 5
1’):
1+ J/ 14— .
_—-2——
V3
where
T = thrust
D = diameter
V = wvelocity

P = density

Other information about the properties of propellers is ob-—
tained by cowbining the wing section theory and the slipstream
theory of Froude. The blade elements are supposed 0 act like
the wing elements of an ordinary wing, moving along spiral paths.
This procedure is rather involved, too, and it seems judicious %o
simplify it by considering the blades as one unit. The main as—
sumption is that variation of the shape of the glipsitream, but
not of its velocity v, may be neglected. Then the slipstream
velocity, as follows from the consideration of the physical dimen-
gion of the guantities determining'it, is necessarily a linear
function of the velocity of flight and the tip velocity of the

blades U. The ratio U/V for zero thrust can be obtained by ap~
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plying the wing section theory o0 the blades. It will often be
exact enough to consider a mean blade section only, say at 0.7 of
the propeller radiug, and to find the value of U/V where its
1ift becomes zero, the air being supposed to be at rest.

The application of the wing section theory in conjunction
with the slipstream theorv of Froude leads %0 an approximate for-
mila for the constant differential quotient dv/dU. The choice

of O.7r as mean radius of action gives the formula

8.8

= (Reference 7)
au 1+ 1. CH

where (U/V), 1is the value of U/V for zero thrust and § the

U’\’l n

av

1S
tum
s|a

o)

entire blade area. By means of thisg formula, and of the rela-
tiong between the slipstream velocity and the thrust, the thrust

can be computed for any value of U/V.

5. (Conclusion.

The simplifications of hydrodynamical computations digcussed
in this paper are of more than practical value for the computa-
tion. They are alsc of great instructive value, as they point out
the main cauges of the different actions of the air. Thesge are
always the same as in rigld mechanics, each force 1sg the reaction
to an acceleration of masses. The kinetic energy contained in an
air flow, and the momentum giving rise to 1t are its main charac-

teristics, and play the same part as do the kinetic ensrgy and the
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momentum of rigid bodies in the mechanics of rigid bodies. These
conceptions appeal to the enginesr and give rise 0 creaiive
thoughte. Thev sghould therefore be put in the very front in aero-
dynamical papers intended for education, instead of absiract math-
ematical conceptions like vortices, which are chiefly of use for

special scientific resgearch.
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